Saturday, November 14, 2009

Reading Comprehension

I have never posted a topic related to Maths so I thought that this is as good a time as any to post something that is just a wee bit related to it. The write-up is very simple but since a lot of us have this phobia of the subject, when we encounter it in a Verbal section we might be, just might be, well .... flummoxed. Read and summarize.


Happy reading.


Why were mathematicians so interested in effective methods in the 1920s? They wanted to solve a problem that was nagging them at the time. Sometimes someone discovered a theorem and published a proof. Then some time passes, months, years or decades, and then someone discovered another theorem that contradicted the first and published a proof. When this happens, mathematicians are left scratching their heads. Both theorems cannot be true. There must be a mistake somewhere. If the proof of one of the theorems is wrong then the problem is solved. They revoke the theorem with a faulty proof and move on. But what if both proofs are sound and stand scrutiny?


These kinds of discoveries are called paradoxes. They are indicative that there is something rotten in the foundations that define how you prove theorems. Mathematical proofs are the only tool that can uncover mathematical truth. If you never know when the opposite theorems will be proven, you can't trust your proofs. If you can't trust your proofs, you can't trust mathematics. This is not acceptable. The solution is to look at the foundations, find the error and correct it so paradoxes don't occur any more. In the early twentieth century, mathematicians were struggling with pretty nasty paradoxes. They felt the need to investigate and fix the foundations they were working on.


The relationship between algorithms and mathematical proofs is an important part of computation theory. It is part of the evidence that software is abstract and software is mathematics. The efforts to fix the foundations of mathematics in the early twentieth century are an important part of this story.


One of the most prominent mathematicians of the time, David Hilbert, proposed a program that, if implemented, would solve the problem of paradoxes. He argued that mathematical proofs should use formal methods of manipulating the mathematical text, an approach known as formalism. He proposed to base mathematics on formal systems that are made of three components.


1. A synthetic language with a defined syntax

2. An explicit list of logical inference rules

3. An explicit list of axioms


Let's review all three components one by one to see how they work. Mathematics uses special symbols to write propositions like a+b=c or E=mc2. There are rules on how you use these symbols. You can't write garbage like +=%5/ and expect it to make sense. The symbols together with the rules make a synthetic language. The rules define the syntax of the language. Computer programmers use this kind of synthetic language every day when they program the computer. The idea of such a special language to express what can't be easily expressed in English did not originate with computer programmers. Mathematicians thought of it first.


How do you test if your formula complies with the syntax? Hilbert required that you use an effective method that verifies that the rules are obeyed. If you can't use such a method to test your syntax then the language is unfit to be used as a component of a formal system.


Inference rules are how you make deductions. A deduction is a sequence of propositions written in the language of mathematics that logically follows. At each step in the sequence there must be a rule that tells you why you are allowed to get there given the propositions that were previously deduced. For example suppose you have a proof of A and separately you have a proof of B. Then the logical deduction is you can put A and B together to make "A and B". This example is so obvious that it goes without saying. In a formal system you are not allowed to let obvious things be untold. All the rules must be spelled out before you even start making deductions. You can't use anything that has not been spelled out no matter how obvious it is. This list of rules is the second component of a formal system.


It was known since the works of philosopher Gottlob Frege, Bertrand Russell, and their successors that all logical inference rules can be expressed as syntactic manipulations. For example, take the previous example where we turn separate proofs of A and B into a proof of "A and B" together. The inference consists of taking A, taking B, put an "and" in the middle and we have "A and B". You don't need to know what A and B stand for to do this. You don't need to know how they are proved. You just manipulate the text according to the rule. All the inferences that are logically valid can be expressed by rules that work in this manner. This opens an interesting possibility. You don't use a human judgment call to determine if a mathematical proof is valid. You check the syntax and verify that all inferences are made according to the rules that have been listed. This check is made by applying an effective method.


If there is no human judgment call in verifying proofs and syntax, where is human judgment to be found? It is when you find a practical application to the mathematical language. The mathematical symbols can be read and interpreted according to their meanings. You don't need to understand the meaning to verify the proof is carried out according to the rules of logic, but you need to understand the meaning to make some real-world use of the knowledge you have so gained. For example when you prove a theorem about geometry, you don't need to know what the geometric language means to verify the correctness of the proof, but you will need to understand what your theorem means when you use it to survey the land.


Another place where human judgment is required is in the choice of the axioms. Any intuitive element that is required in mathematics must be expressed as an axiom. Each axiom must be written using the mathematical language. The rules of logic say you can always quote an axiom without having to prove it. This is because the axioms are supposed to be the embodiment of human intuition. They are the starting point of deductions. If some axiom doesn't correspond to some intuitive truth, it has no business in the formal system. If some intuitive truth is not captured by any axiom, you need to add another axiom.


The list of axioms are the third component of a formal system. Together the syntax, the rules of inferences and the axioms include everything you need to write mathematical proofs. You start with some axioms and elaborate the inferences until you reach the desired conclusion. Once you have proven a theorem, you add it in the list of propositions you can quote without proof. The assumption is that the proof of the theorem is included by reference to your proof. And because all the rules and axioms have been explicitly specified from the start and meticulously followed, there is no dark corner in your logic where something unexpected can hide and eventually spring out to undermine your proof.


To recapitulate [aah the summary given to you... not bad], effective methods play a big role in this program. They are used (1) to verify the correctness of the syntax of the mathematical language and (2) to verify that the mathematical proofs comply with the rules of inferences. The implication is that there is a tie between formal methods and abstract mathematical thinking. If you consider the Church-Turing thesis, there is a further implication of a tie between computer algorithms and abstract mathematical thinking.


This passage has been taken from the article "An Explanation of Computation Theory for Lawyers". The link is: http://www.groklaw.net/article.php?story=20091111151305785

1 comment:

  1. Summary:
    In 1920s mathematical proofs were stated for any axioms. If it was contradicted by another after years then mathematicans try to prove one between the two as a wrong in foundation. Some times, both proofs are strong and contradictory and it results in Paradox. It implies that our foundation is wrong somewhere. The language used by proofs by alphabets were first introduced by mathematicians. In order to linearize the representation of mathematical proofs, formalism came to existence with three components. They involved representation using interpretation of rules, applying rules and apply logic to it. Intuitions are defined by axioms and try to proof it and if not then we take help of another axiom. In this way effectively, we can formalise and linearize mathematical principles.

    ReplyDelete